
WE4D-3 

A Systematic Approach to a Reliable Neural Model for pHEMT 
Using Different Numbers of Training Data 

Mojtaba Joodaki-and Gtinter Kompa 

Dept. of High Frequency Engineering, University of Kassel, Kassel, D-34121, Germany 

Abstract - A systematic approach is presented to achieve 
a reliable neural model for microwave active devices with 
diNerent numbers of training data. The method is 
implemented for a small-signal bias depended modeling of 
pKEMT with different numbers of training data. The errors 
for different numbers of training data have been compared to 
each other and show that by using this method a reliable 
model is achievable even though the number of training data 
is considerably small. The method aims at constructing a 
model which can satisfy the criteria of minimum training 
error, maximum smoothness (to avoid the problem of over- 
fitting), and simplest nehvork structure. 

I. INTRODUCT1ON 

Neural networks recently have been used as fast and 
flexible tools for microwave modeling, simulation, and 
optimization. Since they are fast, accurate, flexible, and 
can be constructed from microwave data under different 
conditions, they are an excellent solution for RF and 
microwave design considering packaging effects. 
Despite the outstanding advantages of neural networks, as 
the number of model input parameters increase, the 
runnunt of training data, size of neural network, and 
training time would all increase. Increased nonlinearity in 
a model also requires increased training data, larger neural 
network size, and longer training time [l]. In this way 
decreasing the number of the training data is of utmost 
importance. 

On the other hand, design of experiment (DOE) can be 
used to obtain maximum information with minimal 
measured data and produce an experimental plan that is in 
sane sense mathematically and statistically optimal. 
Watson and Gupta used DOE to decrease the number of 
electromagnetic simulations in electromagnetically trained 
artificial neural networks (EM-ANN) models for 
microstrip via and interconnects in multilayer circuits [2]. 

A very important issue is, when ample training data are 
available for model development involving ANN, 
considerable freedom exists in the selection of model 
topology. However, when only limited data are available, 
the size of a network and the number of connections have 
to be carefully selected, and the network should be 
appropriately trained; otherwise, it will not generalize well 
even when interpolating. In this paper, tn have a reliable 

neural model from a limited number of training data, DOE 
method is used tn prepare the proper input training data to 
the neural network and then the neural model is 
constructed with respect tn minimum training error, 
maximum smoothness, and simplest network structure. 
The method is implemented for constructing a small-signal 
bias-dependent neural model for a pHEMT from a limited 
number of training data. 

A neural network HBT modeling technique had been 
already introduced by Devadhaktuni, Xi, and Zhang [3]. 
They implemented a multilayer perceptrons (MLP) neural 
network with 3 layers tn model the HBT directly from its 
S-parameter data under different bias conditions. A similar 
model to [3] has been used in this paper and the only 
differences are in inputs and training algorithm. The MLP 
type neural network in this paper takes three inputs 
(frequency, drain-source voltage, and gate-source voltage) 
and gives 8 outputs (magnitudes and phases of &I, S12, 
S2,, and Fizz). The most commonly used training algorithm 
of Back-Propagation, considering a smoothing term for 
adjusting the weights, has been used. Predictions of the 
neural model is tested by a new set of measured data. The 
results with different number of training data by using this 
method have been compared with those of a neural model 
trained with a large number of training data. 

II. METHOD FOR TRAINING AND EVALUATION OF THE 

NEURAL MODEL 

Hung and et al. [4] proposed a criterion, tempered 
modified prediction squared errnr (MPSE), that c’an be 
used to train and evaluate a neural model. The criterion for 
a single output is 

UPSE=TSE+a’o;$ (1) 

TSE=f& -j$ (2) 
1-I 

is the total training squared error,a is the penalty factor in 
the range of 0 tn 1, k is the number of coefilcients in a 
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network, y, is the ith measurement which is the ith target 

of the output node (i = 1, 2, ...I N), j, is the ith output of 

output node and the error variance of 0: is 

a,’ = %(y; -yY 
N (3) 

where J is the mean value of all the experimental data. 
Because, according to Kolmogorov’s theorem [5], any 

continuous vector mapping of a vector varible on any 
compact (closed and bounded) set can be implemented 
exactly with a three-layered artificial neural network three- 
layered neural model has been used. With the full 
connections between each pair of adjacent layers, the total 
number of weights in a three-layered neural network, k , is 
express as 

k=(N,xN,)N, (4) 

where N, is the number of input neurons, N, is the 

number of output neurons and N, is the number of hidden 

neurons. Thus for a multi output neurons the MPSE is 

MpsE=$$$(Y;,j -j,.,)’ 
, I I I 

i 
+a 4 (Ni +pNh &, -+ (5) 

where y, j is the jth observed output of the ith experiment 

and j,,, ‘is the jth estimated output of the ith experiment. 

By increasing the number of hidden neurons, TSE 
decreases exponentially but the second part of (5) 
increases linearly. Because the MPSE is the sum of the 
both parts, it decreases initially, but eventually the MPSE 
starts to increase due to the rise in the second part. The 
location of minimum MPSE is function of a In this work 
a was selected between 0.4 and 0.6, so that the value of 
MPSE,,. deceased neither rapidly nor very slowly and 
over-fitting is avoided while the best network was 
reasonably complicated. 

To add another smoothing factor, the modified delta 
learning rule proposed by Sejnowski and Rosenberg [S] 
has been used to provide exponential smoothing in weight 
adjustment. The change of weights between adjacent 
layers is expressed as 

Awm,, (n + 1) = (1 - I?, )~J’,,, + P,Aw~~,, (n) (6) 
and the adjustment of the weights is done in the following 
tX?““e*: 

w,,,(n+l)=wp,,,(n)+17,Aww,,,(n+l) (7) 

where ww,, (n) is th e weight from neuron p in layer I to 

neuron 4 in layer (I+)) at step n (before adjustment); 
ww,, (n+ 1)is the weight from neuron p in layer I to 

neuron 4 in layer (/+l) at step (n+l) (after adjustment); 
s,,, is the error term of neuron 4 between target and actual 

outputs of layer I; 0, , is the actual output of neuron p in 

layer I; p, is the smoothing factor in layer I; 8, is the 

learning rate in layer I. 
The range of P, is from 0 to 1. Ifp, is 0, then 

smoothing is minimum; the entire weight adjustment 
comes from the newly calculated change. If/$ is 1, the 

new adjustment is ignored and pervious one is repeated. 
An interactive approach has been used to train and 
evaluate a neural model as follow: 

1. 
2. 

3. 

4. 
5. 

6. 

TO 

Select the number of training data. 
Determine the minimum and maximum numbers of 
hidden layer neurons to be considered. N, is the 
total number of neural network to be tested. 
Construct the neural networks with the minimum 
number of nettmns in the hidden layer up to 
maximum number of neurons in the hidden layer. 
Input nodes are Ve, V, and frequency and a bias 
neuron (4 nodes). The output are magnitudes and 
phases of S-parameters (8 nodes). 
Train the neural networks considering (6) and (7). 
Calculate the TSE, d&k/N, and MPSE for 

different networks. Plot MPSE as a function of 
hidden neurons for different a with discrete 
intervals of 0.1 ranging from 0 to 1. Plot TSE and 
a46ik IN as a function of hidden layer neurons. 

Select a neural model using two figures obtained in 
step 5 or use the default a between 0.3 to 0.7. 

111. MODEL DEVELOPMENT AND RESULTS 

verify the method, crossed D-optimal design has 
been used to design the bias dependent S-parameters 
measurement. The levels for Vds are 0 (0.1) 1 V and 1.5 
(0.5) 5 V and for Vgs are -0.1 (-0.1) -0.6 V, -0.8 V, -I V, - 
1.5 and -2 V. Frequency range is t?om 300 MHz to 40 
GHz (41 measurement points). To simplify the measure- 
ment, D-optimal is only applied on Vds and Vgs which 
gives 68 experiments and considering frequency the total 
number of measurements is 2788. 

Since the networks with less than 6 hidden neumn~ are 
not able to tit to the measured data the minimum number 
of hidden layer’s neurons (Nh) is assumed to be 6. Fig. 1 
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shows the TSE and penalty terms (a’&k/N) and Fig. 2 

shows MPSE as functions of Nh, and a, respectively. In 
this verification example a of 0.4 is selected which locates 
the MPSE,,, at 14 neurons in the hidden layer. 
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Fig. 1. TSE and penalty terms as function of number of neurons 
in the hidden layer. 

Fig. 2. MPSE as a function of number of neurons in the hidden 
layer (iih) and penalty factor (a&In this verification example cf of 
0.4 is selected which locates the MPSE,. at 14 neurons in the 
hidden layer. 

Fig. 3 illustrates predictions of S-parameters by the 
neural model and measured S-parameters for the bias point 
of Vds = 4.5 V and Vgs = - 0.2 V which is not used as a 
training data (the transistor at this bias point is not in the 
active working region so the magnitude of Sl 1 is smaller 
than one). 

Fig. 3. Predictions of the magnitudes of S-parameters by the 
neural model compared with measurements for the bias pomt of 
Vds = 4.5 V and Vgs = 0.2 V. Dashed-line for tbe neural model 
results and solid-line for mea~uremcnt results. 

To compare the results the average errors for this model 
and a model trained with the same method but with 24 
neurons in the hidden layer are 1.46 % and 1.29 % for the 
used training data (2788 measurement points) and 2.55 % 
and 2.48 % for all the available measured data (8200 
measurement points), respectively. It means the average 
errm related to the predictions of new data for the neural 
model with 14 neurons in the hidden layer is smaller. 

To compare this model to the standard MLP with 
training algorithm of error back propagation all the 
measurements data (8200 measurements) have been used 
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to train a neural network with 24 neurons in the hidden 
layer. The average error for the standard MLP network is 
1.63 % but as the Fig. 5’shows the predictions by this 
neural network is not smooth and is effected by the noise. 

Frequency [GHz] 

Frequency [GHz] 

Fig. 4. Prediction of the phase of S-parameters by the neural 
model compared with measurements for the bias point of Vds = 
4.5 V and Vgs = - 0.2. Dashed-line for the neural model results 
and solid-line for measurement results. 

Fig. 5. Prediction of the magnitude of Sl I compared with 
measurement for the same bias point used in Figs 3 and 4. 
Dashed-line for the neural model results and solid-line for 
meaS”reIne”t results. 

IV. coNcLusIoN 

A systematic method has been introduced to construct a 
reliable neural model for microwave active devices. 
Although a small number of training data has been used 
and the neural network has a simple stmcture, the model 
gives very smooth and accurate predictions. 
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