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Abstract — A systematic approach is presented to achieve
a reliable neural model for microwave active devices with
different numbers of training data. The method is
implemented for a small-signal bias depended modeling of
pHEMT with different numbers of training data. The errors
for different numbers of training data have been compared to
each other and show that by using this method a reliable
moedel is achievable even though the number of training data
is considerably small. The method aims at constructing a
model which can satisfy the criteria of minimum training
error, maximum smoothnoess (to avoid the problem of over-
fitting), and simplest network structure.

I. INTROBUCTION

Neural networks recently have been used as fast and

flexible tools for microwave modeling, simulation, and
optimization. Since they are fast, accurate, flexible, and
can be constructed from microwave data under different
conditions, they ar¢ an excellent solution for RF and
microwave design considering packaging effects.
Despite the outstanding advantages of neural networks, as
the number of model input parameters increase, the
amount of training data, size of newral network, and
training time would all increase. Increased nonlinearity in
a model also requires increased training data, larger neural
network size, and longer training time [1]. In this way
decreasing the number of the training data is of utmost
importance.

On the other hand, design of experiment (DOE) can be
used to obtain maximum information with minimal
measured data and produce an experimenta] plan that is in
some sense mathematically and statistically optimal.
Watson and Gupta used DOE to decrease the number of
electromagnetic simulations in electromagnetically trained
artificial neural networks (EM-ANN) models for
microstrip vias and interconnects in multilayer circuits [2].

A very important issue is, when ample training data are
available for model development involving ANN,
considerable freedom exists in the selection of model
topology. However, when only limited data are available,
the size of a network and the number of connections have
to be carefully selected, and the network should be
appropriately trained; otherwise, it will not generalize well
even when interpolating. In this paper, to have a reliable

neural mode! from a limited number of training data, DOE
methed is used to prepare the proper input training data to
the neural network and then the neural model is
constructed with respect to minimum training error,
maximum smoothness, and simplest network structure.
The method is implemented for constructing a small-signal
bias-dependent neural model for a pHEMT from a limited
number of training data.

A neural network HBT modeling technique had been
already introduced by Devadhaktuni, Xi, and Zhang [3].
They implemented a multilayer perceptrons (MLP) neural
network with 3 layers to model the HBT directly from its
S-parameter data under different bias conditions. A similar
model to [3] has been used in this paper and the only
differences are in inputs and training algorithm. The MLFP
type neural network in this paper takes three inputs
(frequency, drain-source voltage, and gate-source voltage)
and gives 8 outputs (magnitudes and phases of Sy, 53,
Ssy, and 83,). The most commonly used training algorithm
of Back-Propagation, considering a smoothing termn for
adjusting the weights, has been used. Predictions of the
neural model is tested by a new set of measured data. The
results with different number of training data by using this
method have been compared with those of a neural model
trained with a large number of training data.

11. METHOD FOR TRAINING AND EVALUATION OF THE
NEURAL MODEL

Hung and et al. [4] proposed a criterion, tempered
modified prediction squared error (MPSE), that can be
used to train and evaluate a neural model, The criterion for
a single cutput is

MPSE = TSE +a’c; % (1)

where

1 ¥ ~ 2
TSE=—%(»,=3) @
N3 :
is the total training squared error, @ is the penalty factor in
the range of 0 to 1, k is the number of coefficients in a
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network, y,is the ith measurement which is the Jth target
of the output node (i = 1, 2, ..., N), 7,is the ith output of

cutput node and the error variance of 0'3 is

> 2
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where ¥ is the mean value of all the experimental data,
Because, according to Kolmogorov's theorem [5], any
continuous vector mapping of a vector varible on any
compact (closed and bounded) set can be implemented
exactly with a three-layered artificial neural network three-
layered neural model has been used. With the full
connections between each pair of adjacent layers, the total
number of weights in a three-layered neural network, k, is

€Xpress as
k=(N,xN,)VN, @)

where W, is the number of input neurons, &, is the

o

number of cutput neurons and N, is the number of hidden
neurons, Thus for a multi output neurons the MPSE is

1 da .
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where y, . is the jth observed output of the jth experiment
and ,  is the jth estimated output of the ith experiment.

By increasing the number of hidden neurons, TSE
decreases exponentially but the second part of (3)
increases linearly. Because the MPSE is the sum of the
both parts, it decreases initially, but eventually the MPSE
starts to increase due to the rise in the second part. The
location of minimum MPSE is function of o. In this work
o was selected between 0.4 and 0.6, so that the value of
MPSE,;, deceased neither rapidly nor very slowly and
over-fitting is avoided while the best network was
reasonably complicated.

To add another smoothing factor, the modified delta
learning rule proposed by Sejnowski and Rosenberg [5]
has been used to provide exponential smoothing in weight
adjustment. The change of weights between adjacent
layers is expressed as

Aw,, (n+)=(1-§)8,0,,+pBAw, (1) (6)

and the adjustment of the weights is done in the following
manner:

W (n+)=w, (m)+mAw,, (r+l) (M
where w, () is the weight from neuron p in layer / to

neuron ¢ in layer (}+1) at step n (before adjustment);
w,,, (n+1)is the weight from neuron p in layer / to

neuron ¢ in layer (F1) at step (n+1) (after adjustment);
éq ,is the error term of neuron ¢ between target and actual

outputs of layer /; 0, is the actual output of neuron p in
layer I; 8, is the smoothing factor in layer [; 1, is the

learning rate in layer /.
The range of 3, is from 0 to 1. IfB, is 0, then

smoothing is minimum; the entire weight adjustment
comes from the newly calculated change. If ﬁr is 1, the

new adjustment is ignored and pervious one is repeated.
An interactive approach has been used to train and
evaluate a neurai model as follow:

1. Select the number of training data.

2. Determine the minimum and maximum numbers of
hidden layer neurons to be considered. N, is the
total number of neural network to be tested.

3. Construct the neural networks with the minimum
number of newrons in the hidden layer up to
maximum number of neurons in the hidden layer.
Input nodes are Vg, V. and frequency and a bias
neuron (4 nodes). The output are magnitudes and
phases of S-parameters (8 nodes).

4. Train the neural networks considering (6) and (7).

5. Calculate the TSE, a"d':k/N, and MPSE for

different networks. Plot MPSE as a function of
hidden neurons for different o with discrete
intervals of 0.1 ranging from 0 to 1. Plot TSE and
a*G2k /N asa function of hidden layer neurons.

6. Select a neural model using two figures obtained in
step 5 or use the default a between 0.3 to 0.7,

1I1. MODEL DEVELOPMENT AND RESULTS

To verify the method, crossed D-optimal design has
been used to design the bias dependent S-parameters
measurement. The levels for Vds are 0 (0.1) 1 V and 1.5
(0.5)5 V and for Vgs are 0.1 (-0.1)-06 V,-08V,-1V, -
1.5 and -2 V. Frequency range is from 300 MHz to 40
GHz (41 measurement points). To simplify the measure-
ment, D-optimal is only applied on Vds and Vgs which
gives 08 experiments and considering frequency the total
number of measurements is 2788.

Since the networks with less than 6 hidden neurons are
not able to fit to the measured data the minimum number
of hidden layer's newrons (N,) is assumed to be 6. Fig. 1
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shows the TSE and penalty terms (o *&2k /N ) and Fig, 2

shows MPSE as functions of N, and «, respectively. In
this verification example o of 0.4 is selected which locates
the MPSE,,;i, at 14 neurons in the hidden layer,
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Fig. 1. TSE and penalty terms as function of number of neurons
in the hidden layer.
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Fig. 2. MPSE as a function of number of neurons in the hidden
layer (N},) and penalty factor (¢r).In this verification example & of

0.4 is selected which locates the MPSE;, at 14 neurons in the
hidden layer,

Fig. 3 illustrates predictions of S-parameters by the
neural model and measured S-parameters for the bias point
of Vds = 4.5 V and Vgs = - 0.2 V which is not used as a
training data (the transistor at this bias point is not in the
active working region so the magnitude of S11 is smaller
than one).
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Fig. 3. Predictions of the magnitudes of S-parameters by the
neural model compared with measurements for the bias point of
Vds =4.5 V and Vgs = - 0.2 V. Dashed-line for the neural model
results and solid-line for measurement results,

To compare the results the average errors for this model
and a model trained with the same method but with 24
neurons in the hidden layer are 1.46 % and 1.29 % for the
used training data (2788 measurement points) and 2.55 %
and 2.48 % for all the available measured data (8200
measurement points), respectively. It means the average
error related to the predictions of new data for the neural
model with 14 neurons in the hidden layer is smaller.

To compare this model to the standard MLP with
training algorithm of error back propagation all the
measurements data (8200 measurements) have been used
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to train a neural network with 24 neurons in the hidden
layer. The average error for the standard MLP network is
1.63 % but as the Fig. 5 shows the predictions by this
neural network is not smooth and is effected by the noise,
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Fig. 4. Prediction of the phase of S-parameters by the neural
model compared with measurements for the bias point of Vds =
4.5 V and Vgs = - 0.2. Dashed-line for the neural mode! results
and solid-line for measurement results.
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Fig. 5. Prediction of the magnitude of S11 compared with

measurement for the same bias point used in Figs. 3 and 4.

Dashed-line for the neural model results and solid-line for

measurement resuls.
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1V. CONCLUSION

A systematic method has been introduced to construct a
reliable neural model for microwave active devices.
Although a small number of training data has been used
and the neural network has a simple structure, the model
gives very smooth and accurate predictions.
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